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Definitions

• Modern processors provide Dynamic Voltage and Frequency
Scaling (DVFS) technique.

• DVFS is used to reduce the frequency and thus to reduce the
energy consumption by a CPU while computing.

• But scaling the frequency to lower level reduces the
performance (execution time) of parallel program.

• Energy consumption for individual processor depends on two
power metrics: the static power Pstatic and the dynamic power
Pdyn.
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Definitions

• Pdyn = α · CL · V 2 · F .

• Pstatic = V · Ntrans · Kdesign · Ileak .

• Energy consumption by individual processor of a synchronous
parallel program:
Eind = Pdyn · TComp + Pstatic · (TComp + TComm).

• The frequency scaling factor is the ratio between the maximum
and the new frequency, S = Fmax

Fnew
.
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Objectives
• Study the effect of the scaling factor S on energy consumption

of parallel iterative applications such as NAS Benchmarks.

• Study the effect of the scaling factor S on performance of these
benchmarks.

• Discovering the energy-performance trade-off relation when
changing the frequency.

• We propose an algorithm for selecting the scaling factor S
producing optimal trade-off between the energy and
performance.

• Improving Rauber and Rünger’s1 method that our method best
on.

1
Thomas Rauber and Gudula Rünger. Analytical modeling and simulation of the energy consumption
of independent tasks. In Proceedings of the Winter Simulation Conference, 2012.
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Energy model for homogeneous platform

The dynamic power is exponentially related to the scaling factor S
and the static consumed energy is linearly related to this factor.

Rauber and Rünger’s energy model

E = Pdyn · S−2
1 ·

(
T1 +

∑N
i=2

T 3
i

T 2
1

)
+ Pstatic · S1 · T1 · N

S1: is the max. scaling factor, TI : is the time of the slower task, Ti : is
the time of the other tasks and N: is the number of nodes.

Rauber and Rünger’s optimal scaling factor

Sopt =
3

√
2
N · Pdyn

Pstatic
·
(

1 +
∑N

i=2
T 3

i
T 3

1

)
They reduce degradation of the performance by setting the highest
frequency to the slowest task.
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Slack times of the sync. parallel program
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(b) Sync. imbalanced computations

ProgramTime = maxi=1,2,...,N Ti
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Performance evaluation of MPI programs

Execution time prediction model

Tnew = TMaxCompOld · S + TMaxCommOld
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The maximum normalized error for CG=0.0073 (the smallest) and
LU=0.031 (the worst).
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Performance and energy reduction trade-off
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(c) Real relation.
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(d) Converted relation.

Performance = 1
execution time

Our objective function

MaxDist = maxj=1,2,...,F (

Maximize︷ ︸︸ ︷
PNorm(Sj)−

Minimize︷ ︸︸ ︷
ENorm(Sj))
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Scaling factor selection algorithm

Enumerate the available scaling factors and find Soptimal for
which PNorm − ENorm is maximal.

Where:

ENorm = EReduced
EOriginal

=
Pdyn·S−2

1 ·
(

T1+
∑N

i=2
T3

i
T2

1

)
+Pstatic ·T1·S1·N

Pdyn·
(

T1+
∑N

i=2
T 3

i
T 2

1

)
+Pstatic ·T1·N

PNorm = Told
Tnew

=
TMaxCompOld+TMaxCommOld

TMaxCompOld ·S+TMaxCommOld
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Scaling factor selection algorithm

Algorithm characteristics
• It works online.

• It predicts both the energy consumption and performance.

• It is simultaneously reduces the energy consumption and
maintaining performance of iterative algorithm.

• It takes into account the communication time.

• It is well adapted to imbalanced tasks. Fi =
Fmax ·Ti

Soptimal ·Tmax

• It has a very small overhead. It takes 6.65 µs for 32 nodes.
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Experimental results

• Our experiments are executed on the simulator SimGrid/SMPI
v3.10.

• Our algorithm is applied to NAS parallel benchmarks.

• Each node in the cluster has 18 frequency values from 2.5GHz
to 800MHz.

• We run the classes A, B and C on 4, 8 or 9 and 16 nodes
respectively.

• The dynamic power with the highest frequency is equal to 20 W
and the power static is equal to 4 W .
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Experimental results
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Results comparison
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Results comparison
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Conclusions

• We have presented a new online scaling factor selection method
that optimizes simultaneously the energy and performance.

• It predicts the energy consumption and the performance of
the parallel applications.

• Our algorithm saves more energy when the communication
and the other slacks times are big.

• It gives the best trade-off between energy reduction and
performance.

• Our method outperforms Rauber and Rünger’s method in
terms of energy-performance ratio.
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Future works

• We will apply the proposed algorithm to a heterogeneous
platform.

• While the nodes of a heterogeneous platform are different in:

- Dynamic and static power.
- Individual energy consumption.
- The available frequencies.
- Performance capabilities.

• We will apply the proposed algorithm to a real cluster.

• We will apply the proposed algorithm to a real applications.
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Thanks for Listening

To appear

This work will be appear in ISPA conference proceedings,
August 2014

Questions?
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